39 research outputs found

    Postoperative Deterioration in Health Related Quality of Life as Predictor for Survival in Patients with Glioblastoma: A Prospective Study

    Get PDF
    BACKGROUND: Studies indicate that acquired deficits negatively affect patients' self-reported health related quality of life (HRQOL) and survival, but the impact of HRQOL deterioration after surgery on survival has not been explored. OBJECTIVE: Assess if change in HRQOL after surgery is a predictor for survival in patients with glioblastoma. METHODS: Sixty-one patients with glioblastoma were included. The majority of patients (n = 56, 91.8%) were operated using a neuronavigation system which utilizes 3D preoperative MRI and updated intraoperative 3D ultrasound volumes to guide resection. HRQOL was assessed using EuroQol 5D (EQ-5D), a generic instrument. HRQOL data were collected 1-3 days preoperatively and after 6 weeks. The mean change in EQ-5D index was -0.05 (95% CI -0.15-0.05) 6 weeks after surgery (p = 0.285). There were 30 patients (49.2%) reporting deterioration 6 weeks after surgery. In a Cox multivariate survival analysis we evaluated deterioration in HRQOL after surgery together with established risk factors (age, preoperative condition, radiotherapy, temozolomide and extent of resection). RESULTS: There were significant independent associations between survival and use of temozolomide (HR 0.30, p = 0.019), radiotherapy (HR 0.26, p = 0.030), and deterioration in HRQOL after surgery (HR 2.02, p = 0.045). Inclusion of surgically acquired deficits in the model did not alter the conclusion. CONCLUSION: Early deterioration in HRQOL after surgery is independently and markedly associated with impaired survival in patients with glioblastoma. Deterioration in patient reported HRQOL after surgery is a meaningful outcome in surgical neuro-oncology, as the measure reflects both the burden of symptoms and treatment hazards and is linked to overall survival

    3D ultrasound-guided resection of low-grade gliomas: principles and clinical examples

    Get PDF
    3D ultrasound (US) is a convenient tool for guiding the resection of low-grade gliomas, seemingly without deterioration in patients’ quality of life. This article offers an update of the intraoperative workflow and the general principles behind the 3D US acquisition of high-quality images. The authors also provide case examples illustrating the technique in two small mesial temporal lobe lesions and in one insular glioma. Due to the ease of acquiring new images for navigation, the operations can be guided by updated image volumes throughout the entire course of surgery. The high accuracy offered by 3D US systems, based on nearly real-time images, allows for precise and safe resections. This is especially useful when an operation is performed through very narrow transcortical corridors.publishedVersio

    3D ultrasound-guided resection of low-grade gliomas: principles and clinical examples

    Get PDF
    3D ultrasound (US) is a convenient tool for guiding the resection of low-grade gliomas, seemingly without deterioration in patients’ quality of life. This article offers an update of the intraoperative workflow and the general principles behind the 3D US acquisition of high-quality images. The authors also provide case examples illustrating the technique in two small mesial temporal lobe lesions and in one insular glioma. Due to the ease of acquiring new images for navigation, the operations can be guided by updated image volumes throughout the entire course of surgery. The high accuracy offered by 3D US systems, based on nearly real-time images, allows for precise and safe resections. This is especially useful when an operation is performed through very narrow transcortical corridors

    3D ultrasound–guided resection of low-grade gliomas: principles and clinical examples

    No full text
    3D ultrasound (US) is a convenient tool for guiding the resection of low-grade gliomas, seemingly without deterioration in patients’ quality of life. This article offers an update of the intraoperative workflow and the general principles behind the 3D US acquisition of high-quality images. The authors also provide case examples illustrating the technique in two small mesial temporal lobe lesions and in one insular glioma. Due to the ease of acquiring new images for navigation, the operations can be guided by updated image volumes throughout the entire course of surgery. The high accuracy offered by 3D US systems, based on nearly real-time images, allows for precise and safe resections. This is especially useful when an operation is performed through very narrow transcortical corridors

    Automatic intraoperative estimation of blood flow direction during neurosurgical interventions

    Get PDF
    Purpose In neurosurgery, reliable information about blood vessel anatomy and flow direction is important to identify, characterize, and avoid damage to the vasculature. Due to ultrasound Doppler angle dependencies and the complexity of the vascular architecture, clinically valuable 3-D flow direction information is currently not available. In this paper, we aim to clinically validate and demonstrate the intraoperative use of a fully automatic method for estimation of 3-D blood flow direction from freehand 2-D Doppler ultrasound. Methods A 3-D vessel model is reconstructed from 2-D Doppler ultrasound and used to determine the vessel architecture. The blood flow direction is then estimated automatically using the model in combination with Doppler velocity data. To enable testing and validation during surgery, the method was implemented as part of the open-source navigation system CustusX (www.custusx.org). Results Ten patients were included prospectively. Data from four patients were processed postoperatively, and data from six patients were processed intraoperatively. In total, the blood flow direction was estimated for 48 different blood vessels with a success rate of 98%. Conclusions In this work, we have shown that the proposed method is suitable for fully automatic estimation of the blood flow direction in intracranial vessels during neurosurgical interventions. The method has the potential to make the understanding of the complex vascular anatomy and flow pattern more intuitive for the surgeon. The method is compatible with intraoperative use, and results can be presented within the limited time frame where they still are of clinical interest.acceptedVersio

    A new acoustic coupling fluid with ability to reduce ultrasound imaging artefacts in brain tumour surgery - a phase I study

    Get PDF
    Background Anovel acoustic coupling fluid (ACF), with the potential to reduce surgically induced image artefacts during intraoperative ultrasound imaging in brain tumour surgery, has been evaluated with respect to image quality and safety in a clinical phase 1 study. Methods Fifteen patients with glioblastoma (WHO grade IV) were included. All adverse events were registered in a 6-month study period. During acquisition of 3D ultrasound image volumes, three different concentrations of the ACF and Ringer’s solution were filled into the resection cavity. The effect of ACF on the ultrasound images was rated by the operating surgeon, and by five independent neurosurgeons evaluating a pair of blinded images from all patients. Images from all patients were analysed by comparing pixel brightness in a noise-affected region and a reference region. Results The operating surgeon deemed the ACF images to have less noise than images obtained with Ringers’s solution. The blinded evaluations by the independent neurosurgeons were significantly in favour of ACF (p < 0.0001). The analyses of pixel intensities showed that the ACF images had lower amount of noise than images obtained with Ringer’s solution. No radiological sign of inflammation nor circulatory changes was found in the early postoperative MR images. Of the nine complications registered as serious events in the study period, none was deemed to be caused by the ACF. Conclusion The ultrasound (US) images obtained using ACF have significantly less noise than US images obtained with Ringer’s solution. The rate of adverse events was comparable to what has been reported for similar groups of patients.publishedVersio

    Automatic intraoperative estimation of blood flow direction during neurosurgical interventions

    No full text
    Purpose In neurosurgery, reliable information about blood vessel anatomy and flow direction is important to identify, characterize, and avoid damage to the vasculature. Due to ultrasound Doppler angle dependencies and the complexity of the vascular architecture, clinically valuable 3-D flow direction information is currently not available. In this paper, we aim to clinically validate and demonstrate the intraoperative use of a fully automatic method for estimation of 3-D blood flow direction from freehand 2-D Doppler ultrasound. Methods A 3-D vessel model is reconstructed from 2-D Doppler ultrasound and used to determine the vessel architecture. The blood flow direction is then estimated automatically using the model in combination with Doppler velocity data. To enable testing and validation during surgery, the method was implemented as part of the open-source navigation system CustusX (www.custusx.org). Results Ten patients were included prospectively. Data from four patients were processed postoperatively, and data from six patients were processed intraoperatively. In total, the blood flow direction was estimated for 48 different blood vessels with a success rate of 98%. Conclusions In this work, we have shown that the proposed method is suitable for fully automatic estimation of the blood flow direction in intracranial vessels during neurosurgical interventions. The method has the potential to make the understanding of the complex vascular anatomy and flow pattern more intuitive for the surgeon. The method is compatible with intraoperative use, and results can be presented within the limited time frame where they still are of clinical interest

    A new acoustic coupling fluid with ability to reduce ultrasound imaging artefacts in brain tumour surgery - a phase I study

    No full text
    Background Anovel acoustic coupling fluid (ACF), with the potential to reduce surgically induced image artefacts during intraoperative ultrasound imaging in brain tumour surgery, has been evaluated with respect to image quality and safety in a clinical phase 1 study. Methods Fifteen patients with glioblastoma (WHO grade IV) were included. All adverse events were registered in a 6-month study period. During acquisition of 3D ultrasound image volumes, three different concentrations of the ACF and Ringer’s solution were filled into the resection cavity. The effect of ACF on the ultrasound images was rated by the operating surgeon, and by five independent neurosurgeons evaluating a pair of blinded images from all patients. Images from all patients were analysed by comparing pixel brightness in a noise-affected region and a reference region. Results The operating surgeon deemed the ACF images to have less noise than images obtained with Ringers’s solution. The blinded evaluations by the independent neurosurgeons were significantly in favour of ACF (p < 0.0001). The analyses of pixel intensities showed that the ACF images had lower amount of noise than images obtained with Ringer’s solution. No radiological sign of inflammation nor circulatory changes was found in the early postoperative MR images. Of the nine complications registered as serious events in the study period, none was deemed to be caused by the ACF. Conclusion The ultrasound (US) images obtained using ACF have significantly less noise than US images obtained with Ringer’s solution. The rate of adverse events was comparable to what has been reported for similar groups of patients
    corecore